Feasibility Study of MREIT in Clinical Applications

نویسندگان

  • V. E. Arpinar
  • M. J. Hamamura
  • L. T. Muftuler
چکیده

Introduction Several in vitro studies have shown that the electrical impedance of malignant tissues is significantly higher than those of normal and benign tissues. Therefore, impedance imaging has the potential as a diagnostic tool in cancer. Magnetic Resonance Electrical Impedance Tomography (MREIT) is a technique that is used for imaging impedance distribution inside an object noninvasively [1]. In MREIT, an external current is injected into the object and magnetic field perturbations due to this current are measured. Impedance images can be formed from these measurements using various reconstruction algorithms. In MREIT, increasing injected current results in higher SNR in the measurements, leading to improved quality of the reconstructed images. However, safety regulations impose a limit on the total current that can be injected into a patient [3, 4]. Although a human study with 9mA is reported [2], the injected currents in MREIT should not exceed a few hundred microamperes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ex Vivo and In Silico Feasibility Study of Monitoring Electric Field Distribution in Tissue during Electroporation Based Treatments

Magnetic resonance electrical impedance tomography (MREIT) was recently proposed for determining electric field distribution during electroporation in which cell membrane permeability is temporary increased by application of an external high electric field. The method was already successfully applied for reconstruction of electric field distribution in agar phantoms. Before the next step toward...

متن کامل

Simulation of MREIT using Balanced Steady State Free Precession (b-SSFP) Pulse Sequence

Magnetic resonance electrical impedance tomography (MREIT) utilizes the relation between conductivity and magnetic flux density induced by externally injected current to perform conductivity imaging of body tissues. A spin echo pulse sequence has been predominantly used in MREIT to acquire the z-component Bz of the induced magnetic flux density data from MR phase images. Spin echo based MREIT p...

متن کامل

Anisotropic WM conductivity reconstruction based on diffusion tensor magnetic resonance imaging: a simulation study

The present study aims to estimate the in vivo anisotropic conductivities of the White Matter (WM) tissues by means of Magnetic Resonance Electrical Impedance Tomography (MREIT) technique. The realistic anisotropic volume conductor model with different conductivity properties (scalp, skull, CSF, gray matter and WM) is constructed based on the Diffusion Tensor Magnetic Resonance Imaging (DT-MRI)...

متن کامل

Use of 3-D magnetic resonance electrical impedance tomography in detecting human cerebral stroke: a simulation study.

We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation stu...

متن کامل

Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation.

The electroporation effect on tissue can be assessed by measurement of electrical properties of the tissue undergoing electroporation. The most prominent techniques for measuring electrical properties of electroporated tissues have been voltage-current measurement of applied pulses and electrical impedance tomography (EIT). However, the electrical conductivity of tissue assessed by means of vol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010